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Optimal Control of Systems With Uncertainty -

In the control of complex systems, uncertainties will usually occur in the

mathematical description of the system.. For example, the differential equations

describing the system may not be known exactly or it may not be possible to make

exact measurements of the state of the system. Air Force systems such as air-to-

air missile encounters with an aircraft or missile guidance systems are examples

of such problems. Ignoring uncertainties in the design of controllers for these

systems may result in the actual system performing poorly and inaccurately. Proper

methods for analyzing systems with uncertainty are needed. The research conducted

under AFOSR-Grant 76-2923 has addressed the problem of the optimal control of

j  systems with uncertainty.

-
- j Our approach to these problems is to assume that nature is perverse and will

choose the uncertainty to maximize the performance index which the controller is

trying to minimize. For each control there is a guaranteed performance and the

optimal control is the one which achieves the best guaranteed performance. This

approach leads quite naturally to the concept of minmax control. A minmax control

has the appealing property of producing the best possible guaranteed performance.

Unlike the stochastic approach to uncertainty, the minmax approach does not require

that the statistics of the uncertainty be known. This is advantageous since the

• statistics of the uncertainty are often difficult to estimate. Also, a minmax

control may be more easy to determine and implement than a stochastic control.

- 
• 

Few results are available which can be applied to obtain minmax solutions.

If the problem is considered as a zero sum differential game and if this game has

a saddle point solution then the mihimizing control in the saddle point solution

pair is also a minmax control. In this case, the theory for zero sum differential

games can be applied. However, as shown by our examples, saddle point solutions
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seldom exist for uncertain systems and new techniques must be developed for con-

ãtructing minmax solution for these problems. While the minmax approach is a

natural way to treat problems with uncertainty, methods for determining minmax

• solutions must still be developed before this approach can be used in practice.

lie esearch undertaken has been directed toward developing such techniques and

J thereby aid in the design of systems with uncertainty.

• While the main concern of the investigation has been with dynamic minmax

problems, it was felt that it would be worthwhile to also investigate static

problems. The reasons for this are two-fold. First, static problems are easier

to solve than dynamic ones; yet the characteristics of the solutions of both

problems have much in comson, A deeper understanding of the static case is useful

in the analysis of dynamic problems. Secondly, the condition for dynamic minmax

problems analogous to Pontryagin ’s principle involves a static minmax problem and

the results for static minmax problems are used in the dynamic case.

Necessary conditions and sufficient conditions for static minmax problems

have been developed and are presented in El). The necessary conditions, in the

form of a Lagrange multiplier rule, can be used to determine candidates for the

solution. The sufficient conditions can be used to verif y whether a candidate

is indeed the solution. Since the sufficient conditions involve a strengthening

of. the necessary conditions , they are easy to apply once a candidate has been

obtained.

In some problems the performance of the system cannot be measured by a single

criterion alone,but multiple criteria are needed. The minmax results of [1) were

extended to problems with multiple criteria in t2). It is also shown there that

solution candidates for the multicriteria case can be obtained by solving a

related problem with a scalar criterion. This simplifies the effort needed to

obtain solutions to problems with multiple criteria,
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With dynamic systems, the uncertainty or disturbance may enter the system

through the state equations or through the initial conditions. First consider

problems with time-varying uncertainty in the state equations.. These problems

arise when it is not possible to obtain an exact.model of the system. Often the

analysis is carried out by neglecting the uncertainty. However, this may be too

J idealized - for the analysis to be valid and the actual system may not perform well. -

Then the analysis must take into account the fact that the model is not exact

and the minmax solution concept is an attractive way to treat the uncertainty

since it assures the best possible guaranteed performance. In practice, nature

- • will probably not be so perverse as to choose the disturbance to maximize the

• performance index and the system will perform better than predicted. However, if

5 a control not having the minmax property is used,. the system may perform decidedly

worse than expected . Thus a control having the minmax property should be used in

the design of systems with uncertainty when there is no a priori knowledge of the

value of the uncertainty.

We have developed a sufficient condition which the niinmax control must satisfy

t3). This condition also leads to a method for constructing a minmax control.

It has been shown that the minmax control can be obtained by solving a related

-~~~~~ optimal control problem without uncertainty. Thus the well-developed techniques

from deterministic optimal control theory can be used to solve problems with

uncertainty via this related problem. This is thought to be a significant step

in the direction of obtaining methods which can be readily used to solve problems

with time varying uncertainty in the state equation. -

• In E4) , problems with uncertain initial conditions are treated. in these

problems, the exact value of the initial state is not known. Instead , only an

inexact measurement is available. This is often the case in realistic situations

‘ta~ .
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where, for exam1,le, due to hardware limitations, position and velocity cannot be

measured exactly. All that is available is the measured values of those quantities

which equal the true values plus or minus some error. Our results were obtained

by using a transformation which transforms the original problem with uncertainty

in the initial state to one with the initial state known but dith parameter un-

certainty in the state equation. The latter problem is simpler to solve. It

can be shown that the solution of the new problem is a solution to the original

one with uncertain initial condition. Through this observation we are able to

present a constructive technique for finding the minmax control and also a suE-

- 
• ) ficient condition which can be used to verify sufficiency. As a by-product, our

techniques can also be used to solve some !rO~~
emS where there is parameter Un-

- 
• 

certainty in the state equation (rather than time-varying uncertainty). Parameter
I

uncertainty often occurs in the system model when there is a lack of experimental

• data so that the exact values of the parameters in the model are unknown.

In suram ary, our investigation of static minmax problems has produced necessary

conditions and sufficient conditions which can be used to solve such problems.

This has also led to a clearer understanding of the nature of minmax problems.

For dynamic problems with uncertainty in the state equations or in the initial

conditions, we derived sufficient conditions which the mininax control must satisfy

and, using these conditions, constructive techniques were developed which can be

used to generate minmax solutions. These methods are now available for solving

minmax problems and can be used to analyze problems where there is uncertainty

• in the model or in the measurement of the initial state. They will aid in the

design of systems where exact models of the system are not available or where

exact measurements of the state of the system cannot be obtained,

Finally , a detailed description of our results can be found in the papers

which have resulted from our research. These papers are included in the Appendix.
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